
Understanding Customer Dissatisfaction With

Underutilized Distributed File Servers

Erik Riedel

Department of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh PA 15213

riedel@cmu.edu
Tel: 412-268-3056

Fax: 412-268-3010

Garth Gibson

School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh PA 15213

garthgibson@cs.cmu.edu

Abstract

An important trend in the design of storage subsystems is a move toward direct network

attachment. Network-attached storage offers the opportunity to off-load distributed file
system functionality from dedicated file server machines and execute many requests

directly at the storage devices. For this strategy to lead to better performance as perceived

by users, the response time of distributed operations must improve. In this paper, we

analyze measurements of an Andrew File System (AFS) server that we recently upgraded

in an effort to improve client performance in our laboratory. While the original server's

overall utilization was only about 3%, we show how burst loads were sufficiently intense

to lead to periods of poor response time significant enough to trigger customer
dissatisfaction. In particular, we show how, after adjusting for network load and traffic to

non-project servers, 50% of the variation in client response time was explained by

variation in server CPU utilization. That is, clients saw long response times in large part
because the server was often over-utilized when it was used at all. Using these measures,

we see that off-loading file server work in a network-attached storage architecture has the

potential to benefit user response time. Computational power in such a system scales

directly with storage capacity, so the slowdown during burst periods should be reduced.

This research is sponsored by DARPA/ITO through ARPA Order D306, and issued by Indian Head
Division, Naval Surface Warfare Center, under contract N00174-96-0002. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing official
policies, either expressed or implied, of any sponsoring or supporting agency, including the Defense
Advanced Research Projects Agency and the United States Government

371

1. Introduction

Recent trends in the computer industry have greatly increased the demands for common,
shared information repositories. In most cases, these have taken the form of distributed

file systems that are shared across a workgroup, organization-wide, or even world-wide.

A distributed file system, with a number of machines acting as "servers" and a much

larger number of "clients" have become popular due to a number of factors, including

separation of administrative concerns, sharing of data, and transparency [Spasojevic96].

Advances in other computing technologies have made possible many novel applications
that are placing increasing demands on distributed storage systems. The delivery of video

and audio, large-scale parallel applications, and the growth of the Internet have increased

demands on distributed information systems both in terms of the resources required by

individual applications and the aggregate demands made by a continually increasing
number of clients.

Clienl
Server

Distributed File Systems

Figure I - Traditional Distributed File System

At the core of all distributed information systems lies a set of server resources that are

becoming increasingly loaded as the demands increase. A traditional distributed file

system model, where "storage" is simply embodied in the disk and device driver, is
illustrated in Figure 1. This picture explains in part why increasing load on distributed

file systems often requires fast file servers - the file server must traverse two protocol

stacks for each client request. Data must move from attached disk drives, across the SCSI
bus, through the server's memory system, back across the system bus, down the network

protocol stack and, finally, onto the network wire. The server has very little "interest" in

the data, yet it must move it through its memory hierarchy - possibly several times - in

order to satisfy all the protocol layers involved.

In conjunction with this pressure toward using faster machines as file servers, recent

years have seen rapid development, both in terms of areal density and in the raw

bandwidth that can be provided off the platters of fixed storage devices. On top of these
trends, perhaps the largest change comes from standardizing storage interfaces. The

adoption of the SCSI interface for storage devices allowed storage vendors to optimize
below a common protocol, and application and file system developers to optimize above

it. By specifying a separate high-level "logical" interface and a physical interface, SCSI

made possible numerous optimizations inside disk controllers including RAID,

372

transparent recovery management, dynamic remapping, and storage migration. A

common interface to operating system software allowed users to buy drives based on

price and performance, rather than on compatibility requirements with other parts of their
computer systems. This model has led to typical, high-performance distributed file

systems that today look more like Figure 2. There is one interconnect for communication
between clients and servers (IP or IPX over ATM or Ethernet), and another for

communication between servers and disks (SCSI).

Client Server
Disks

Distributed File Systems (2)

Figure 2 - Actual Distributed File System Architecture Today

The difficulty with this architecture is that a good portion of the overall system power is

"dissipated" in the server system that bridges the gap between SCSI and the distributed

file system protocol used by clients. With relatively slow storage devices and relatively

slow networks, this additional overhead has until now been hidden among other

limitations. The continued development of disk technology has made possible products
with sustained data rates of up to 12 MB/s shipping today and 40 MB/s does not look

unreasonable by the end of the decade. Fibre Channel interconnects also eliminate the

traditional SCSI bus as a bottleneck. ATM, Fast Ethernet, and Myrinet provide client

network rates of 12 MB/s today and 100 MB/s in the near future. These advances mean

that the amount of room to "hide" inefficiencies in distributed file server implementations

is shrinking dramatically.

The study described in the rest of this paper examines the requirements placed on file
server architectures by studying the behavior of current distributed file system

technology. Specifically, we have analyzed the system-level behavior of an AFS

(Andrew File System) server in our environment. The following sections will present the
behavior we have observed and the pressure on file server performance.

Section 2 provides a brief overview of AFS and presents our measurement methodology,

tools, and environment. Section 3 provides a summary of some of the workload
characteristics we observed. Section 4 discusses the factors that affect AFS performance

as perceived by users. Section 5 discusses the potential available through the use of

network-attached storage devices. Finally, we conclude in Section 6 and discuss avenues
of future work.

373

2. Experimental Methodology

2.1, Andrew File System

At Carnegie Mellon (and at hundreds of other large institutions around the world) the
Andrew File System is used by nearly all computer users. The major contribution of AFS

over previous distributed file systems such as the Network File System (NFS), was the

focus on scalability of server resources. The goal of AFS was to support a campus-wide
network of workstations and users with a relatively small amount of file server resources

[Howard88]. The primary way in which AFS addressed this goal is through the use of

local disk for extensive client-side caching. Each client workstation in an AFS

environment dedicates a portion of its local disk space as a cache for frequently accessed

remote data. Data in client caches is kept up-to-date through the use of a strong

consistency protocol based on callbacks. When a client accesses a particular file from an

AFS server, the server marks a callback for that data and client and promises to inform
the client when the data is changed. Rather than having a large number of clients

constantly checking in at the file server to see if data has changed, the responsibility for
cache invalidation lies with the server.

In the Spring of 1996, our lab upgraded its AFS server in response to our users'
complaints about AFS performance. A major motivation in writing this paper is to

identify and detail the performance reasons behind the upgrade and determine the

implications for AFS distributed file systems built on network-attached storage
architectures.

7.,2. Measurement Environment

The measurements reported here were taken from a single file server over the course of a

two month period at the beginning of 1996. This server contained all of the project
volumes used for research in the Parallel Data Laboratory (PDL). The server was a Sun

SPARCstation 4/60 with 24 MB of memory serving 20 volumes representing a total of 8

GB of data in 4 partitions. The clients were fifteen Alpha AXP machines (Turbochannel

models 300, 400, 500 and 600 and PCI models 200 and 400), nine IBM RS/6000 250s

located in a single laboratory, and fifteen additional machines of varying types, ranging

in power from DECstation 5000s to a SPARCstation 20, in this lab and in the offices of
students and faculty. The workload, a diverse set of activities one would expect from a

medium-sized research group, included software development, document preparation,

data analysis and simulation.

The School of Computer Science network, to which all these machines are connected,

consists of an Ethernet segment for each floor of its building, with an additional segment
for the central machine room where all AFS servers are housed, all of which are

connected to a single bridged backbone. The cs.cmu.edu AFS cell, in which our

measurements where taken, consists of 25 (primarily SPARCstation) dedicated servers

providing home directories; repositories for shared, locally-maintained software

t Another goal of AFS is to serve as a wide-area distributed file system that can span the entire globe. In
order to facilitate this, AFS provides a single global namespace that is divided at the top level of the
hierarchy into a number of cells, each of which represents a specific organization or administrative domain.
The basic unit of distribution in AFS is a volume, a related set of files assigned for a specific purpose and
representing a specific allocation of disk space. Each cell contains a set of well-known database server
machines that maintain a nmpping of which volumes reside on which of a number offi/e server machines.
The file server nmchines have disks attached that are divided into logical partitions, each of which holds
some number of volumes.

374

collections, and volumesassignedto specific researchprojects.Larger projectsoften
"own" an entire serverwhich housesall of that group's project volumes.The server
undertestwasrunningAFS 3.2with localpatchesundertheMach2.6 operatingsystem
and the clients were running severaldifferent operatingsystemswith AFS versions
rangingfrom locally modified 3.1 to 3.4beta.

2,3. Analysis Tools

Traces of file server activity were taken with the aid of a tracing package developed by

the Coda group at Carnegie Mellon [Mummert94]. A number of trace points, including

most system calls, all accesses into the buffer cache, and all disk requests, within the

operating system were annotated with log entries. Logs were collected in a kernel buffer

and periodically extracted and shipped over the network to a second machine that
gathered the traces on its local disk and periodically transfer them to tape. This facility

allowed the collection of very detailed system traces without much effect on

performance. The Coda group measured a performance impact of between five and seven

percent in their studies. Traces were collected almost continuously over a two month

period resulting in over 4 GB of data.

In addition to this data, client and server AFS activity was measured through the use of

the AFS xstat facility which collected hourly summaries of operations performed,

aggregate performance per operation type, as well as details on request sizes) We also

used rxdebug and vos to collect information on active clients and volume use patterns
from the server. Statistics of the server and clients over three months represented an
additional 400 MB of raw data.

To track performance of the network connecting our machines, we collected statistics
derived from a periodic measurement of the round-trip time to the server and client

network segments. Our measurement machine (ozone) executed a 30-second ping every 5

minutes noting the average round-trip time and packet loss rate to a selected number of

clients (one on each floor with client machines) and to the server,

We developed a set of scripts to process the trace and summary data and used the Matlab

numerical computation and visualization system to provide plots and statistical tests. In
the following sections we will provide plots of measured data as well as means,
variances, and Pearson r correlation coefficients, and r 2 coefficients of determination. We

use the Pearson coefficient of determination to quantify how much of the variation in a

set of measurements can be accounted for by the characteristics of underlying system

factors [Kirk90].

3. Workload Characteristics

In this section, we summarize a number of basic parameters of the workload recorded in

our traces. Specifically the effectiveness of client caches, the mix of AFS operations at
both the clients and our server, and the transfer size distributions at the server.

2Due to the highly distributed nature of AFS and our desire to measure a real workload, it was not possible
to track all of the clients that made requests to this particular server, nor can we determine exactly what
client activity was directed to this particular server. This introduces some amount of "noise" into our data,
making some variations more difficult to explain.

375

3.1. Client Caching

As shown in previous work, the hit ratio for data in the local AFS cache is extremely

good [Spasojevic96, Howard88]. Table 1 gives the average hourly hit ratio across the
twenty clients for which we have the most complete data. This data emphasizes the well-

established fact that there is a high degree of temporal locality in user access streams, and

that local disk caching in AFS removes a considerable burden from the file server. The

data shown represents measurements from a single week of traces - specifically the week

of January 29, 1996 to February 4, 1996. This representative week-long period will be

used throughout the rest of the paper.

Average 5 6 8 9 10

data 97.0 99.6 98.9 92.7 94.2 90.5 99.4 81.7 95.8 98.8 96.5
metadata 61.8 98.0 81.5 36.9 15.6 22.1 76.9 16.6 17.5 33.9 20.8

12 13 14 17 19 2t)

data 99.1 99.4 98.7 99.9 99.6 99.3 99.5 99.3 98.4 99.1

metadata 62.3 22.9 45.0 99.9 98.2 99.3 99.1 96.9 99.0 95.2

Table 1 - Client Cache Hit Ratio

3.2. Operation Distribution

Table 2 shows a breakdown of the most frequently used AFS operations and their relative

popularity. The Clients column shows the total for the 20 clients reported above over the

course of the same week. Note that the number of client and server requests does not

match up because this is not a closed system - there were additional clients making

requests of the PDL server, and the PDL clients made use of other AFS servers (as we
will discuss in more detail later). The total amount of data transferred by clients was 993

MB in FetchData requests and 520 MB in StoreData requests. The server provided a total

of 750 MB of data via FetchData and accepted 955 MB via StoreData requests.

AFS ()peralion ('lienls Serxer
total fraction total fracti on

FetchStatus 748,620 68.0% 412,695 43.4%

StoreStatus 20,085 18%0 22,642 2.4%

FetchData 174,717 15.9% 62,288 6.5%

StoreData 46,630 4.2% 32,414 3.4%
CreateFile 15,407 1.4% 17,089 1.8%

RemoveFile 17,242 1.6% 20,422 2.1°/0

BulkStatus 0 0.0% 244,636 25.7%

GetTime 50,568 4.6% 122,393 12.9%

GiveUpCallbacks 28,343 2.6% 17,298 1.8°/0

total 1,101r612 951,877

Table 2 - Distribution of AFS Operations

376

3,3. Request Sizes

Table 3 shows the distribution of request sizes over the course of a week. As seen in

previous studies, small requests dominate the mix, while most of the bytes are moved in

large requests [Spasojevic96, Baker91]. 80% of reads and 65% of writes are for less than
8 kilobytes. However, for StoreData requests, more than two-thirds of the bytes are

moved at the largest request size. This means that system designers must consider

optimizations that maximize the bandwidth of the largest requests without adversely

affecting the latency of the majority of small operations.

Request Size Fetch Data StoreData

up to 128 bytes 19.

129 bytes to 1 K 3.
l K to 8 K 24
8Kto 16K 2

16Kto32K 1
more than 32 K 10

total 62.

Table 3

503 31.3% 7,607 23.5%

663 5.9°/o 3,196 9.9%
858 39.9% 10,035 31.0%

127 3.4% 2,244 6.9%

889 3.0% 2,510 7.8%

245 16.4% 6,789 21.0%

285 32,381

- Distribution of Request Sizes

4. Impacts on User-Perceived Performance

4.1. Server Utilization

These statistics provide some idea of the typical work being performed by an AFS file
server, but how does the performance of the server figure into customer purchasing and

system sizing decisions.9 The Parallel Data Laboratory recently upgraded its AFS server
from a dedicated SPARCstation 1 to a brand-new dedicated SPARCstation 20 with about

5 times the rated performance. This upgrade was done to a large extent in response to the
increasingly vocal complaints of slow performance by our users. In fact, little data was

consulted in the decision to upgrade this server. In an attempt to understand what effect

the resources available on our server has on user performance, we took a look at the load

on the original server after the upgrade. Given the traces described above, we can in

hindsight attempt to better understand how server load relates to file system performance
and customer satisfaction.

The top chart of Figure 3 shows the fraction of the server CPU spent in the AFS
fileserver process over the course of a week, averaged over ten minute intervals. As we

can see, the CPU on the server is mostly idle. Although we do see a number of peak

periods in which the utilization reaches as high as 65%, the mean CPU utilization is less
than 3%. This is a disturbing result. Were we wrong to spend about $10,000 for a new,

fast file server to replace a slow, inexpensive server that is only 3% utilized?

377

5O
CPU Time in fileserver Process

[I I I I I

4O

30

_.20

10

0
0

5O

ii

1 2 3 4 5
Day [Hourly Averages - 29 January to 4 February]

Number of Completed Disk Operations
I 1 I I I f

s.I./ "x

6

4O

_ 30e--

o 20

lO

0
0

1
3 4 5 62 7

Day [Hourly Averages - 29 January to 4 February]

Figure 3 - CPU and Disk Utilization

A similar effect is seen in the plot of disk activity in the lower chart of Figure 3. This

chart shows the total number of physical disk accesses completed in each of the same l O

minute intervals. It is harder to talk about percentage utilization in this case, but the three

drives on this server should be able to sustain considerably more than the 50,000

accesses/hour (14 accesses/second) that correspond to the highest point on the chart. The

average is less than one access/second over three disks. Again, a negligible total average
load.

Simply looking at these numbers, we might be tempted to conclude that this five year old
machine is performing adequately and there is no need for an upgrade at all. 3 So how do

we explain our users' complaints? We clearly needed some other measure that we could

use to gauge users' perception of the performance of the system. Since overall utilization

is not the problem, we surmised that looking at response time might prove more

enlightening.

3 In fact, the upgrade policy at large AFS sites is rumored to be generally insensitive to utilization as well,
The algorithm used can roughly be paraphrased as, when customers complain, begin with the oldest
component of the system and continue to replace equipment with newer models until complaints subside.

378

4.2. Client Response Time

The client data that we collected provided hourly samples of the number and total elapsed

time of all AFS operations of each type completed by that client in that hour. We chose to
use the average response time for FetchStatus operations as our measure of user-visible

performance because 1) it is the most frequently-called operation, 2) in the absence of

outside influences, it does an approximately constant amount of work on each call (since

data fetches in AFS may be as large as several hundred kilobytes, but most files are much

smaller than this, FetchData delays are expected to be much more variable) and 3) we

found an r 2 coefficient of determination suggesting that 50% of the variation in the

response times of FetchStatus and the per-kilobyte latencies of FetchData are correlated,

as shown in Figure 4.

If we again look at the average response time in Figure 4, we see significant variation -

ranging over an order of magnitude. We hypothesize that users of AFS, accustomed to

local disk access times (due to high local cache hit ratios described above) will be

significantly affected by high variance in response times, particularly when the effect

lasts for significant lengths of time, such as the hourly intervals shown in this chart.
Based on this, we began searching for the causes of high variance in user response time.

Comparison of Average Response Time for FetchStatus and FetchData

500,

400

"G"300
E

200

b

\

O _........ /I

0 1

..........FetchStatus

-- FetchData (per kbyte)

i ,. !. 'I i

2 3 4 5 6 7
Day [Hourly Averages - 29 January to 4 February]

Figure 4 - FetchStatus and FetchData Performance

In order to convince ourselves that our AFS server upgrade had indeed been worthwhile,
we performed an experiment to compare the performance of our old server and our new
server under the same workload. The numbers in Table 4 show the results of this

controlled experiment. One test client was constantly performing star_ () calls at

379

randominto a directory of 2,000files. At the sametime, a secondclient wasrunning a
"competing"workloadby continuouslyreadingalargefile from thesamepartitionon the
sameserver.Both clientsflushedtheir cachesat the endof acycle sothat all operations
werehandledat theserver.Thetableshowstheaverageresponsetime of theFetchStatus
operationsthat resultedfrom the st:at () calls, the numberof FetchStatusoperations
completed in the five minute measuringinterval, and the averagethroughput of the
competingprocess.

SPARCstation1+ 14.0 25.9 8,486 212.7
SPARCstation20 69.0 16.7 15,291 343.8

Table 4 - Direct Comparison of Server Platforms

From this experiment, we see that the increased CPU performance of the newer machine

reduces average FetchStatus response time by 35% at periods of high server load. At the

same time, the faster machine can complete almost twice as many FetchStatus operations
in the same time interval while also providing 62% higher data throughput. Since more

server processing power is clearly effective for improving client performance, we expect

to be able to find a dependence between server CPU utilization and client response time
in our trace data.

4.3. Impact of the Network

When we first compared the CPU and disk utilization trace to the FetchStatus response
time trace, we were unable to find a significant correlation between times of slow user

response and times of high server utilization. This unintuitive result led us to look for

other factors that might explain performance at the clients. The most obvious factor in a

distributed system is the network between machines, so this is the parameter we
examined next.

The top chart of Figure 5 shows the average network round-trip time of pings on the lab

and machine room Ethernet segments over one hour periods. We see a mean of 9.0 ms
and a standard deviation of 7.2 ms on the server network, and 16.9 ms 15.8 ms on the lab

segment, where most of the clients were located. The lower left portion of Figure 5 shows

the graphical correlation between the response time of the network and FetchStatus

response time. 4 Although not a strictly linear relationship, the Pearson r 2 coefficient

suggests that 3 5% of the variation in the response times can be attributed to variation in

network performance. To focus on this relationship, the correlation graph in the lower

right of Figure 5 reports only those hours where average ping time was larger than 20 ms.
In this figure, a linear relationship between server response time and network response

time is more plausible. This matches our expectations that the network connecting the

machines in a distributed system is a considerable factor in overall performance. It is for
this reason that the new server and many of our clients are being outfitted with switched

ATM networking dedicated to the PDL in addition to the existing Ethernet. However, we

4 Directly correlated data, with 100% of the variation explained, would appcar as a straight line on these
graphs.

380

alsoseethat networkresponsetime is not acompleteexplanationof client responsetime
variance.

100
Average Ping Time

80
-_.
E

v

60
E

I--

._ 40

a_ 20

0
0

400

300
E

I--

200
o
Q..

6)
rY 100

AI

-- client segment I
..........server segment I F

L'_a il , li '_'
i , r!. ,,,

,i i j'_l I_ j,, i],t",, i"/il

,.%: ---':-._:1-._ . ,.,-_.:.:,._,-_ , -<,::-.,:_._,,_. , .,,,,,_.._./,, L,-{_:_..=..._Cr.,,_L-_L_ _ _:. '...-,_,
t I I I I I

1 2 3 4 5 6
Day [Hourly Averages - 29 January to 4 February]

High Network Load
200 x

X

X

X X
X

X

X

_. 150
I--

o

r_ 5O

X

X

X

X

XX X)< X

Xx x

0 0 '
0 50 100 20 40 60 80 100

Ping Time Ping Time

Figure 5 - Correlation of Response Time with Network Behavior

4.4. Impact of Shared Resources

Our next step was to again compare server utilization (Figure 3) to average client

response time after the periods of high network load are eliminated from the response

time trace (see the top chart of Figure 6) Again, we were not able to explain as much of

the remaining variance as we expected Seeking an explanation for this disappointment,
we did notice an effect that we had not considered in our initial analysis. Although all of

the project volumes for the target group were on the server we were tracing, home
directories and shared binaries were being accessed on servers shared across the

department. _ Since we were looking at all FetchStatus operations performed in hour-long

intervals, load on these shared servers could have a significant impact on user response
time. We see a significant r 2 coefficient of 65% between clients of the same system type,

suggesting that about 65% of the variation in a single client's response time trace is

explained by the variation on the average response time trace of machines of the same
system type At the same time, we see a strong anti-correlation (r2coefficient of

essentially zero) with clients of different system types. The plots at the bottom of Figure
8 show the correlation between the response time seen at millburn (an RS/6000) and

s Instrumenting all of the servers and clients in our environment would have been impractical due to the
system changes necessa .ry and the sheer volume of users we would have had to persuade to participate.

381

responsetime at otherRS/6000sand,in theright plot, the correlationbetweenmillburn
and someof the Alpha AXP machinesin the study.Not surprisingly in hindsight, our
mistake was to overestimatethe effectivenessof the replication of commonly used
binariesandunderestimatethefrequencywith which users'homedirectoriesareusedin
the courseof projectwork. Althoughmostof theuserdatamaybestoredonafast server,
binariesandhomedirectoriesstoredon shared,slow serversmaybea considerabledrag
onuser-visibleperformance.6

400
Average Response Time of FetchStatus During Low Network Load

I I ! I I !

3OO

_200

1001

0
0

A
il ivy, !, i - !i ,rl

1 2 3 4 5 6 7
Day [Hourly Averages - 29 January to 4 February]

500

_'400

_1300

200

n,"100

0
0

X

X

X x
X X

X x x x x
X 1_ X

X X X
X

X X

X

200 400 600
Response Time (millburn)

500

_ 400
o

I

.300

_ 200

1oo

0
0

X

1O0 200 300 400
Response Time (millbum)

Figure 6 - Correlation of Response Time by Client System Type

4. 5. Impact of Server Utilization

In order to minimize the effect of interaction with servers other than the one we are

tracing, we filtered the response time data to include only those periods when a host was
active on our server. 7 Figure 7 shows the graphical correlation between average

FetchStatus response time and server disk activity and average FetchStatus response time

and server CPU activity. It is apparent from the leftmost correlation chart of Figure 7 that

much of the response time is not correlated with server activity, but as we could not

6 We will be taking a closer look at this effect and will be placing read-only replication sites of the most-
used shared files on our upgraded server to improve our overall performance.
7A host was classified as being active on the server in a particular hour if it appeared in the rxdebug output
at the end of the hour. Since rxdebug provides infornmtion only for those clients the server has recently
interacted with, this does not completely eliminate, but should significantly reduce, the fraction of
"foreign" FetchStatus requests in the averages.

382

extract the delays associatedwith central AFS servers,we expect someamount of
uncorrelatedpoints.Neglectingdatapointswith lessthan500disk accessesperhour in
the centerplot, we seean r2correlation of 25%, as response times are impacted by the

amount of disk work (dominated by FetchData operations) the server is already

processing when new requests arrive. In the rightmost correlation plot, we see an even

closer correlation with CPU utilization (for the same set of points as in the center plot

where the disks are busy) which explains just over 50% of the variation in response time.

This suggests that poor response times occur when the server CPU and disk are busy

(after network and "foreign" server effects have been accounted for). This result fits well

with our prior observations that a considerable number of cycles are required to move
data from a disk, through the user-level fileserver process, back into the kernel, and onto

the network, and that these numbers scale with the amount of data being moved

[Gibson96].

150
Average FetchStatus Response Time Across All Clients at Low Network Load

I I I I I I

100

E

50

0
0

120

100

8O

E 60

v 40_x_

0

i, i
1irii

A 'i f"i! ,,,, , fl
' I _ I I v

1 2 3 4 5 6
Day [Hourly Averages - 29 January to 4 February]

High Disk Load High Disk Load
50 50

Xx
x

X

4O

....3O

E
""20

10

X

x

x

x

X_<_Xx X

XXxxx

40 x

X

._.30
cn X
E xx
V20r Xxx

O--0
20 40 0 20 40 0 10 20

Completed I/Os Completed I/Os CPU Utilization

x

X

Figure 7 - Correlation of Response Time with Disk Activity and CPU Utilization

We have finally discovered the correlation we have been seeking - a faster server CPU
benefits AFS users because there are bursts of CPU activity, specifically when data is

being transferred, during which server load leads to poor client response times.

383

5. Network-Attached Storage

5.1. Opportunities for Network-Attached Storage

Recalling Figure 2, which shows how the distributed file server machine acts as an

intermediary, copying data between the client network and the storage interconnect, we
would like to develop techniques for reducing server utilization during periods of intense

transfer workloads. In fact, because of the speed, addressability, and distance limitations

of SCSI cabling, new storage interconnects such as Fibre Channel are increasingly

similar to client network fabrics With this convergence in mind, we propose that the

client and storage networks discussed in Section 1 be combined into a single fabric. As

illustrated in Figure 8, this creates the opportunity for disks with sufficient intelligence to
perform a significant fraction of the clients' file operations without the need for

intervention from the distributed file server [Gibson96].

Eliminating the server machine as a bottleneck for data transfers between storage and

applications provides a significant opportunity for improving overall performance. By not

involving a third party, common case transfers are considerably faster and the number of
requests that can be serviced at any given time should be increased. Data transfer
functions are off-loaded to the network-attached devices and the server would be

responsible only for "higher-level" distributed file system functionality

Server

N_A NASD
Client _ SD I

NASD

Network-Attached Storage

Figure 8 - Network-Attached Storage Architecture

There is a range of possible configurations for such a system At one end of the

spectrum, Network SCSI is being promoted by several vendors as a means of providing

third-party transfer between clients and drives attached directly to the network
[Seagate96]. All commands are processed by a server which uses the SCSI third-party

transfer interface to instruct drives to transfer data directly to clients. At the other end of

the spectrum, dedicated Network File System (NFS) or Netware servers [NetApp96,
NetFrame96] are storage systems that directly implement these distributed file system

protocols, backed by specially optimized hardware configurations. Network-attached

storage proposes to provide an intermediate point. The distributed file system server

would continue to be responsible for operations such a file opens and metadata
management, but drives would have sufficient intelligence to handle data transfer

requests without server intervention for each individual request. In order to achieve the

desired scalability and performance, it may also be necessary to have file status and
inquiry functions handled at the drives [Gibson96].

384

This direct transfer concept is not a new one. In 1991, Randy Katz described the basic

advances that make network-attached devices feasible [Katz91]. The High Performance

Storage Systems project [Watson95] is exploring these technologies in the context of
large MPP and SMP systems based on the framework of the Mass Storage Systems

Reference Model [Miller88]. Van Meter provides a survey of current products and major

research issues, including security, network protocols, and the changes in operating

system paradigms necessary to efficiently support network-attached devices [Van
Meter96].

Such an architecture raises several important issues. Can the drive be made sufficiently
intelligent at a reasonable cost? How do we ensure the security and integrity of the data

being stored? Can enough of the server functionality be off-loaded to significantly

improve both throughput and scalability? How effective will this architecture be for
meeting the needs of the clients in a distributed system?

5.Z Implications of this Study for Network-Attached Storage

The biggest lesson that we take away from the preceding analysis is that the mean

behavior of thesystem is essentially irrelevant. Even though the system is 97% idle when
measured in total, it is the high load periods that matter to customer satisfaction. As Table

5 shows, peak loads, even at the granularity of an hour, are much higher than average
loads. Moreover, the distribution of operations measured over the long term, shown on

the left of Table 5 and similar to previous studies [Spasojevic96] is not preserved in these

peak periods - data activity is nearly twice as common in these peaks. With customer

satisfaction sensitive to response time variation, the server performance during peak loads

is likely to be more important than at other times.

Server O :Jerations Weekly Tolal Peak tlour
total fraction hourly total fraction

Fetch Status 412,695 70.6% 1,247 6,209 45.3%
StoreStatus 22,642 3.9% 134 175 1.3%

FetchData 62,288 10.7% 370 4,219 30.8%

StoreData 32,414 5.5% 192 147 1.1%

CreateFile 17,089 2.9% 101 52 0.4%

RemoveFile 20,422 3.5% 122 2,587 18.9%

GiveUpCallbacks 17,298 3.0% 103 326 2.4%
total 584,848 2,269 13,715

Table 5 - Distribution of Server Operations

Given a high emphasis on the server performance during peak loads, off-loading the

high-cost data movement operations, as proposed by the network-attached storage

architecture, should decrease the variance in user response time significantly, even

though overall averages will simply be reduced from a small number to an even smaller

number. The appropriate analogy is not to system throughput, but something closer to the

way reliability is measured. Changing the mean time to data loss (MTTDL) of a system
from 10 years to 100 years does not mean that one expects the system to last ten times as

long, but that the probability of a failure occurring within the next hour is reduced by an

order of magnitude. We suggest that there is an analogous measure for distributed file

systems, the mean time until burst (bad) performance (MTTBP) which should be

increased so that the probability of poor response times in any given hour of work is

385

decreased.We would expectusersto be pleasedif the occurrence of a period of bad

response time were reduced from once a week to once every 3 months.

6. Conclusions

Modern distributed file systems such as AFS very successfully cache file data on client

machines. While this ensures that average response time is low, it also ensures large
variance in response time because operations that must contact remote servers are much
slower. Direct measurement of these remote servers show that their overall utilization can

be quite low, 3% in our data, while users are simultaneously sufficiently dissatisfied with
performance to pay for a faster server, This study shows that the faster server is in fact

needed because, although 97% idle overall, these file servers can be intensely overloaded

during bursts of activity, leading to periods of poor response time long enough to

disgruntle users.

In addition to focusing our attention on burst server loads, our analysis shows that the

distribution of operation types during bursts is different from overall distributions.
Servers should be optimized for workloads with much more data transfer than the overall

distribution suggests.

These results confirm our intuition that network-attached storage, if it can re-route most

data transfer directly to storage devices, has the potential to reduce customer response

time in two ways - 1) it avoids the copying steps at the server and 2) it off-loads the work

of data transfer from the server, reducing the chance of a bust of overutilization.

Out future work, then, is to evaluate the client performance on such network-attached

storage architectures and demonstrate the implications on distributed file system design.

7. Acknowledgements

This research is sponsored by DARPA/ITO through ARPA Order D306, and issued by
Indian Head Division, Naval Surface Warfare Center, under contract N00174-96-0002.
The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing official policies, either expressed or implied, of

any sponsoring or supporting agency, including the Defense Advanced Research Projects

Agency and the United States Government.

We would also like to thank Chris Demetriou and Jim Zelenka for their help is collecting

the trace data. In addition, this work was complemented by discussions among all the
members of our research group, including David Nagle, Khalil Amiri, Fay Chang,

Eugene Feinberg, Howard Gobioff, Chen Lee, Berend Ozceli, David Rochberg, and

Hugo Patterson.

8. References

[Spasojevic96] Spasojevic, M. and Satyanarayanan, M. "An Empirical Study of a Wide-

Area Distributed File Systetn" ACM Transactions on Computer Systems. May 1996.

386

[Howard88] Howard, J. et. al. "Scale and Performancein a Distributed File System"
ACM Transactions on Computer Systems. Volume 6, Number 1. February 1988, pp. 51-
81.

[Mummert94] Mummert, L. and Satyanarayanan, M. "Long Term Distributed File

Reference Tracing: Implementation and Experience" Technical Report CMU-CS-94-213.
November 1994.

[Kirk90] Kirk, R. Statistics: An Introduction. Holt, Rinehart and Winston, Inc. 1990, pp.
155-190.

[Ruemmler93] Ruemmler, C. and Wilkes, J. "UNIX disk access patterns" Proceedings of

the USENIX Winter 1995 Technical Conference. January 1993, pp. 405-420.

[Baker91] Baker, M. et. ai. "Measurements of a Distributed File System" Proceedings of

the 13 th Symposittm on Operating Systems Principles. October 1991.

[Gibson96] Gibson, G. et. al. "A Case for Network-Attached Secure Disks" Technical

Report CMU-CS-96-142. June 1996.

[Seagate96] Seagate Corporation "Barricuda Family Product Brief (STt9171)". June
1996.

[NetApp96] "Network Appliance Advantage" http://www.netapp.com/products. July
1996.

[Netframe96] "The ClusterServer 8500 Series" http://www.netframe.com/products. July
! 996.

[Katz91] Katz, R., "High-Performance Network- and Channel-Attached Storage"

Proceedings of the 1EEE. Volume 80. August 1992.

[Watson95] Watson, R. and Coyne, R. "The Parallel I/O Architecture of the High-

Performance Storage System (HPSS)" Fourteenth IEEE Symposium on Mass Storage

Systems. September 1995, pp. 27-44.

[Miller88] Miller, S. "A Reference Model for Mass Storage Systems" Advances in

Computers. Volume 27. 1988, pp. 157-210.

[Van Meter96] Van Meter, R. "A Brief Survey of Current Work on Network Attached

Peripherals" Operating Systems Review. Volume 30, Number 1. January 1996.

387

